#### An Experimental Study of Nonlinear Standing Waves in Resonators with Numerical Comparison

Josh Finkbeiner, Xiaofan Li, Ganesh Raman, Chris Daniels, Bruce Steinetz

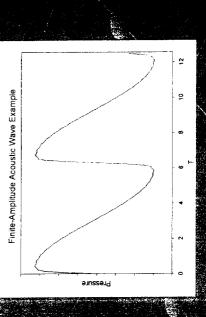
Lawrenson et. al. [Journal of the Acoustic Society of America, Nov. 1998] described the generation of shock-free high-amplitude pressure waves in closed cavities using large equipment and resonators to produce the reported effects. An attempt is made to generate shock-free high-amplitude pressure waves using relatively small resonators. Ambient air is used as the working fluid. A small cylindrical resonator is tested resulting in the lack of a shocked waveform while a larger model of the same shape produces shock waves. A small conical resonator produces shock-free pressure waves at resonance, but the amplitude of these waves is small. A larger cone resonator model produces shock-free pressure waves of higher amplitude. A large horn-cone resonator also produces shock-free high amplitude pressure waves. A numerical model is used to compare the experimental results to theoretical results. The effects of structural resonances on the production of shock-free high-amplitude pressure waves are discussed, especially concerning difficulties encountered when these resonances were in the frequency ranges of interest. Identifying features of a structural resonance are presented.

This is a preprint or reprint of a paper intended for presentation at a conference. Because changes may be made before formal publication, this is made available with the understanding that it will not be cited or reproduced without the permission of the author.

#### Mear Standing

Dr. Ganeshi Raman Dr. Xiaofan Li Minois Institute of Technology 

IF Dr. Bruce M. Steinetz IASA John H. Glenn Research Center

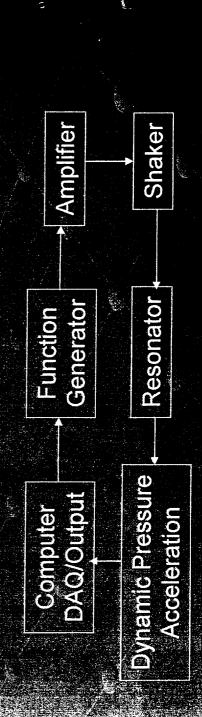

Dr. Christopher C. Daniels Ohio Aerospace Institute.

#### 

- P. F. Istorical overview
- Nonlinealifies in acoustics
  - Experimental setup
- Numerical development
- Experimental and numerical results/comparison
- · Conclusions

### Historical Overview

- Finite-amplitude acoustic waves
- Experimental, numerical work
- Experimentally find pressure limit
- Reduce PDEs to ODEs assuming Fourier sawtooth waves
  - ✓ Finite-amplitude exceeded
- Lawrenson et. al. (1997), Ilinskii et. al. (1998)
- Shaped resonators cause shaped pressure waves
- Numerical model predicted waveforms well




## Objectives of Research

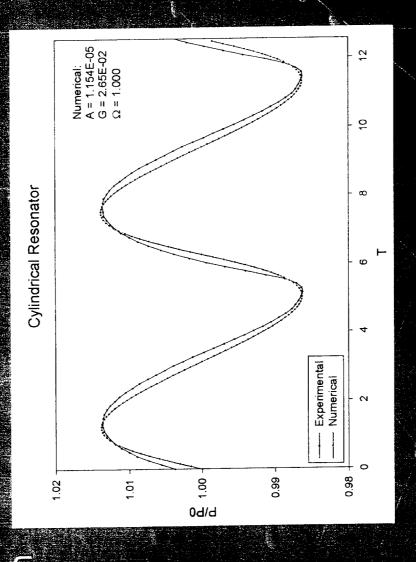
- e Duplicate nonlinear acoustic effects in shalped cavities
- S Modify existing numerical models
- Account for shaped (cylindrical) center blockages in resonators
- Extend model to minimize human input (automation)
- Directly compare results from model and experiments

### Experimental Setup

- Cylinder and cone resonators; force) nonlinear acoustics test
  - other designs in progress
    - PID control easily implemented

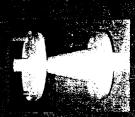


## Numerical Development

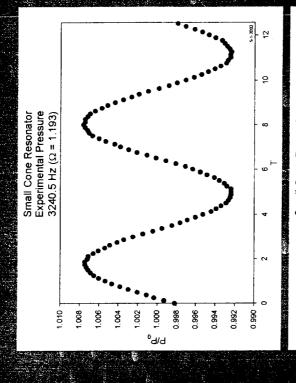

- Navier-Stokes Equations
- Mass, momentum, state
- Account for cavity shape and center blockage
- Radius
- X=derivative of radius
- Normalize equations
- € Assume periodic solutions (e<sup>i ⊚,t</sup>), transform to frequency domain
- Solve for velocity potential, velocity using multiple shooting method

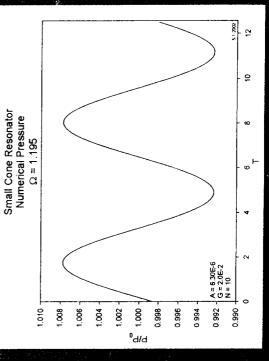
### OVERCE RESONATO

- Martched acceleration parameter
  - Adjusted viscous dissipation (G)
- G larger than expected
- Relative size of boundary layer
- Small resonator, G difficult to determine




r = 0.625", 0 < x < 5" (R = 0.125, 0 < X < 1)



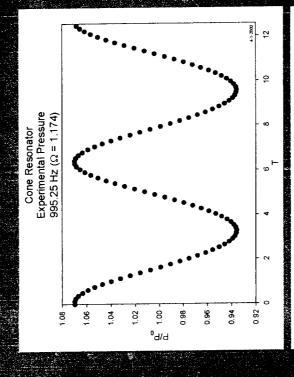


#### Cone Resonator

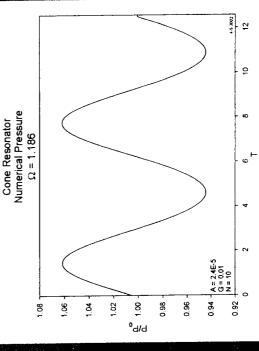
- Approximated A and G
  ferms
- Viscous dissipation term difficult to determine
- Good qualitative agreement
- Nonlinear effects present in small resonators



r = 0.126" + 0.202\*x, 0 < x < 2.5"(R = 0.0502 + 0.202\*X, 0 < X < 1)

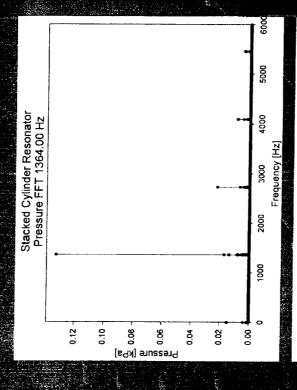


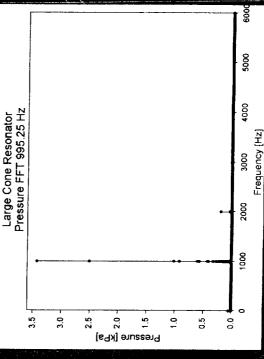




### Conical Resonator

- Acceleration waveform approximated
- Resonator material not rigid
- Top plate acceleration different than bottom plate
- Good qualitative agreement

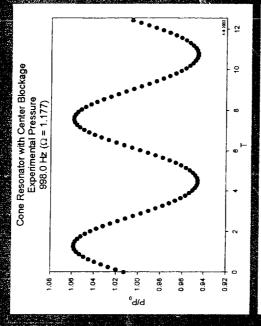


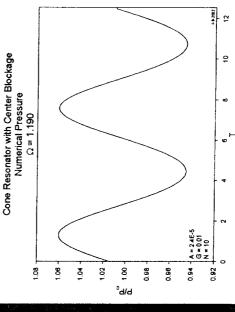

r = 0.523"+0.247\*x, 0<x<8" (R = 0.0652+0.247\*X, 0<X<1)






### 


- Cylindrical Resonator
- Several harmonics appear in FFT
- Shows energy propagation between harmonics
  - Conical Resonator
- High harmonics do not appear
- Energy confined to lower harmoncs

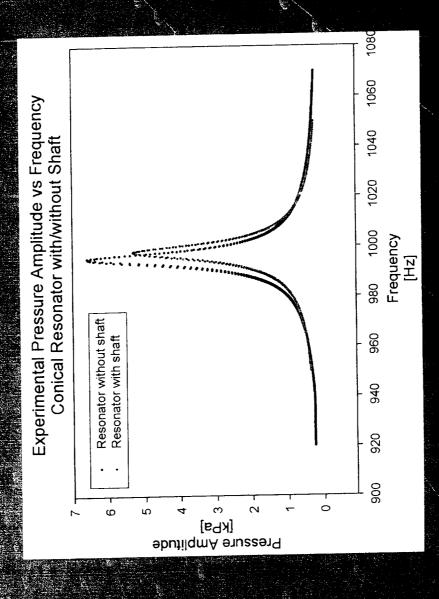





### 

- Acceleration approximated
- Both cases show higher
  frequencies
- High amplitude pressure waves present
- Strong qualitative agreement



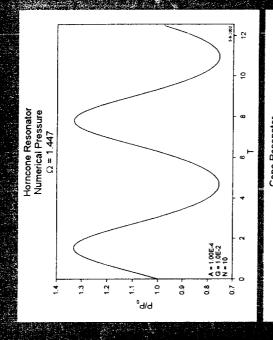


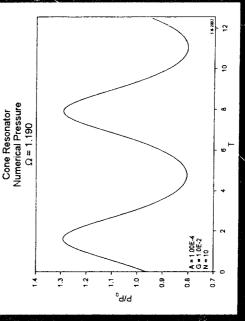

 $\Gamma = 0.523$ "+0.247\*x, 0<x<8" (R = 0.0652+0.247\*X, 0<X<1)

 $r_0 = 0.125, 0 < x < 8$ " ( $R_0 = 0.0156, 0 < X < 1$ 

# Conigal Resonator Comparison

- from code:
- W = 1.186 withoutcenter blockageW = 1.190 withcenter blockage
- Ratio 0,9966
- Experiment:
- 995.25 Hz withou
- center blockage 998.00 Hz with central blockage
  - Ratio 0.9972





### Officone Resonator

- Compare to cone numerical results at similar A
- Horncone predicted to have higher dynamic pressure
- Horncone resonant frequency higher

Cone: R = 0.0652 + 0.247 \*X, 0<X<1

R = 0.1622\*sinh(1.4316)\*(X-0.25), 0.25<X<1 Horncone: R = 0.02833\*cosh(6.62989\*X) , 0<X<0.25





### What comes next?

- Change accelerometer location in cone
- Direct comparison with model
  - Adjust model parameters
- Account for boundary layer effects
- Test new resonator designs
- Optimization routines

## Concluding Remarks

- Shlock-free pressure waves generated and
- e: Cyllindirical center blockages do not hindel
  - Shock-free pressure waves
- Numerical model predicts acoustic behavior